Tut 3: Functions, Piecewise Functions, Domains and Ranges of Functions
CHECK THE LINK BELOW THIS HEADING FOR SOLUTIONS!
Remember to check the corresponding Questions on the memo only
Click here to view the solutions to the question below
5. If \(f(x) = 3x^2 - x + 2\), find:
\(f(2), f(a), f(-a), f(a + 1), 2f(a), f(a^2), [f(a)]^2\) and \(f(a + h)\).6. Evaluate the difference quotient for the given function. Simplify your answer.
(a) \(f(x) = 4 + 3x - x^2, \frac{f(3 + h) - f(3)}{h}\)
(b) \(f(x) = x^3, \frac{f(a + h) - f(a)}{h}\)
(c) \(f(x) = \frac{1}{x}, \frac{f(x) - f(a)}{x - a}\)
(d) \(f(x) = \frac{x+3}{x+1}, \frac{f(x) - f(1)}{x - 1}\)
7. Find the domain of the function
(a) \(f(x) = \frac{x+4}{x^2-9}\)
(b) \(f(x) = \frac{2x^3-5}{x^2+x -6}\)
(c) \(f(x) = \sqrt[3]{2x - 1}\)
(d) \(g(t) = \sqrt{3 - t} - \sqrt{2 - t}\)
(e) \(h(x) = \frac{1}{\sqrt[4]{x^2-5x}}\)
8. Find the domain and the range and sketch the graph of the function
\(h(x)=\sqrt{4 - x^2}\)9. Find the domain and sketch the graph of the function
(e) \(g(x) = \sqrt{x - 5}\)
(d) \( H(t) = \frac{9-t^2}{3-t} \)
(g) \( G(x) = \frac{3x + |x|}{x}\)
(i) \(f(x) = \left\lbrace \begin{array}{c} x + 2 \mbox{ if } x < 0 \\ 1 - x \mbox{ if } x \geq 0 \end{array} \right.\)
(l) \(f(x) = \left\lbrace \begin{array}{l} x + 9 \mbox{ if } x < -3, \\ -2x \mbox{ if } |x| \leq 3, \\ -2x \mbox{ if } x > 3. \end{array} \right. \)
11. Find a formula for the described function and state its domain.
(a) A rectangle has perimeter 20m. Express the area of the\\ rectangle as a function of the length of one its sides.
(b) A rectangle has area \(16m^2\). Express the perimeter of the rectangle as a function of the length of one of its sides.
Comments
Post a Comment